Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(3-1): 034126, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632782

RESUMO

The recently proposed Ehrenfest M-urn model with interactions on a ring is considered as a paradigm model which can exhibit a variety of distinct nonequilibrium steady states. Unlike the previous three-urn model on a ring which consists of a uniform steady state and a nonuniform nonequilibrium steady state, it is found that for even M≥4, an additional nonequilibrium steady state can coexist with the original ones. Detailed analysis reveals that this additional nonequilibrium steady state emerged via a pitchfork bifurcation which cannot occur if M is odd. Properties of this nonequilibrium steady state, such as stability, and steady-state flux are derived analytically for the four-urn case. The full phase diagram with the phase boundaries is also derived explicitly. The associated thermodynamic stability is also analyzed, confirming its stability. These theoretical results are also explicitly verified by direct Monte Carlo simulations for the three-urn and four-urn ring models.

2.
Phys Rev Lett ; 132(8): 084003, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457705

RESUMO

We report direct atomic force microscopy measurements of pinning-depinning dynamics of a circular moving contact line (CL) over the rough surface of a micron-sized vertical hanging glass fiber, which intersects a liquid-air interface. The measured capillary force acting on the CL exhibits sawtoothlike fluctuations, with a linear accumulation of force of slope k (stick) followed by a sharp release of force δf, which is proportional to the CL slip length. From a thorough analysis of a large volume of the stick-slip events, we find that the local maximal force F_{c} needed for CL depinning follows the extreme value statistics and the measured δf follows the avalanche dynamics with a power law distribution in good agreement with the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model. The experiment provides an accurate statistical description of the CL dynamics at mesoscale, which has important implications to a common class of problems involving stick-slip motion in a random defect or roughness landscape.

3.
Phys Rev E ; 109(1-1): 014124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366480

RESUMO

A gambling demon is an external agent that can terminate a time-dependent driving protocol when a certain observable of the system exceeds a prescribed threshold. The gambling demon is examined in detail both theoretically and experimentally in a Brownian particle system under a compressing potential trap. Insight for choosing an appropriate work threshold for stopping is discussed. The energetics and the distributions of the stopping positions and stopping times are measured in simulations to gain further understanding of the process. Furthermore, the nonstationary and far-from-equilibrium stochastic process in the action of the gambling demon allows us to examine in detail some fundamental issues in stochastic thermodynamics, such as irreversibility and stopping-time fluctuation relation. Paradoxical violation of the stopping-time fluctuation relation can be reconciled in terms of the entropy production associated with fast hidden internal degrees of freedom. All the simulation or theoretical results are confirmed experimentally.

4.
Nat Commun ; 14(1): 6221, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798284

RESUMO

Friction between two rough solid surfaces often involves local stick-slip events occurring at different locations of the contact interface. If the apparent contact area is large, multiple local slips may take place simultaneously and the total frictional force is a sum of the pinning forces imposed by many asperities on the interface. Here, we report a systematic study of stick-slip friction over a mesoscale contact area using a hanging-beam lateral atomic-force-microscope, which is capable of resolving frictional force fluctuations generated by individual slip events and measuring their statistical properties at the single-slip resolution. The measured probability density functions (PDFs) of the slip length δxs, the maximal force Fc needed to trigger the local slips, and the local force gradient [Formula: see text] of the asperity-induced pinning force field provide a comprehensive statistical description of stick-slip friction that is often associated with the avalanche dynamics at a critical state. In particular, the measured PDF of δxs obeys a power law distribution and the power-law exponent is explained by a new theoretical model for the under-damped spring-block motion under a Brownian-correlated pinning force field. This model provides a long-sought physical mechanism for the avalanche dynamics in stick-slip friction at mesoscale.

5.
Phys Rev E ; 107(3): L032601, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37072954

RESUMO

We report a systematic study of the dynamics of self-propelled particles (SPPs) over a one-dimensional periodic potential landscape U_{0}(x), which is fabricated on a microgroove-patterned polydimethylsiloxane (PDMS) substrate. From the measured nonequilibrium probability density function P(x;F_{0}) of the SPPs, we find that the escape dynamics of the slow rotating SPPs across the potential landscape can be described by an effective potential U_{eff}(x;F_{0}), once the self-propulsion force F_{0} is included into the potential under the fixed angle approximation. This work demonstrates that the parallel microgrooves provide a versatile platform for a quantitative understanding of the interplay among the self-propulsion force F_{0}, spatial confinement by U_{0}(x), and thermal noise, as well as its effects on activity-assisted escape dynamics and transport of the SPPs.

6.
Phys Rev E ; 107(3-1): 034312, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37072985

RESUMO

We consider growing directed network models that aim at minimizing the weighted connection expenses while at the same time favoring other important network properties such as weighted local node degrees. We employed statistical mechanics methods to study the growth of directed networks under the principle of optimizing some objective function. By mapping the system to an Ising spin model, analytic results are derived for two such models, exhibiting diverse and interesting phase transition behaviors for general edge weight, inward and outward node weight distributions. In addition, the unexplored cases of negative node weights are also investigated. Analytic results for the phase diagrams are derived showing even richer phase transition behavior, such as first-order transition due to symmetry, second-order transitions with possible reentrance, and hybrid phase transitions. We further extend previously developed zero-temperature simulation algorithm for undirected networks to the present directed case and for negative node weights, and we can obtain the minimal cost connection configuration efficiently. All the theoretical results are explicitly verified by simulations. Possible applications and implications are also discussed.

7.
Phys Rev E ; 108(6-1): 064114, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243422

RESUMO

A generalized class of the nonequilibrium state, called the nonequilibrium asymptotic state (NEAS), is proposed. The NEAS is constructed within the framework of Fokker-Planck equations in thermodynamic limit. Besides the usual equilibrium state and nonequilibrium steady state (NESS), the class of NEAS could also cover the nonequilibrium periodic state (NEPS) in which its dynamics shows periodicity, the nonequilibrium quasiperiodic state (NEQPS), and nonequilibrium chaotic state (NECS) in which its dynamics becomes chaotic. Based on the theory of NEAS thermodynamics, the corresponding thermodynamics of different NEASs could also be determined. Finally the interacting Ehrenfest urn ring model is used as an example to illustrate how different kinds of NEAS (equilibrium state, uniform NESS, nonuniform NESS, NEPS) in the three-urn case are identified in our framework. In particular, the thermodynamics of NEPS and its phase transitions to other types of NEAS are studied.

8.
Phys Rev E ; 106(3-1): 034302, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266821

RESUMO

We consider coupled network dynamics under uncorrelated noises that fluctuate about the noise-free long-time asymptotic state. Our goal is to reconstruct the directed network only from the time-series data of the dynamics of the nodes. By using the stochastic force inference method with a simple natural choice of linear polynomial basis, we derive a reconstruction scheme of the connection weights and the noise strength of each node. Explicit simulations for directed and undirected random networks with various node dynamics are carried out to demonstrate the good accuracy and high efficiency of the reconstruction scheme. We further consider the case when only a subset of the network and its node dynamics can be observed, and it is demonstrated that the directed weighted connections among the observed nodes can be easily and faithfully reconstructed. In addition, we propose a scheme to infer the number of hidden nodes and their effects on each observed node. The accuracy of these results is illustrated by simulations.

9.
Phys Rev E ; 106(2): L022106, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109984

RESUMO

We experimentally demonstrate that a Brownian gyrator of a colloidal particle confined in a two-dimensional harmonic potential with different effective temperatures on orthogonal axes can work as an autonomous heat engine capable of extracting work from the heat bath, generated by an optical feedback trap. The results confirm the theoretically predicted thermodynamic currents and validate the attainability of Carnot efficiency as well as the trade-off relation between power and efficiency. We further show that current fluctuations and the entropy production rate are time independent in the steady state and their product near the Carnot efficiency is close to the lower bound of the thermodynamic uncertainty relation.

10.
Phys Rev E ; 105(4-1): 044406, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590680

RESUMO

In the study of biological networks, one of the major challenges is to understand the relationships between network structure and dynamics. In this paper, we model in vitro cortical neuronal cultures as stochastic dynamical systems and apply a method that reconstructs directed networks from dynamics [Ching and Tam, Phys. Rev. E 95, 010301(R) (2017)2470-004510.1103/PhysRevE.95.010301] to reveal directed effective connectivity, namely, the directed links and synaptic weights, of the neuronal cultures from voltage measurements recorded by a multielectrode array. The effective connectivity so obtained reproduces several features of cortical regions in rats and monkeys and has similar network properties as the synaptic network of the nematode Caenorhabditis elegans, whose entire nervous system has been mapped out. The distribution of the incoming degree is bimodal and the distributions of the average incoming and outgoing synaptic strength are non-Gaussian with long tails. The effective connectivity captures different information from the commonly studied functional connectivity, estimated using statistical correlation between spiking activities. The average synaptic strengths of excitatory incoming and outgoing links are found to increase with the spiking activity in the estimated effective connectivity but not in the functional connectivity estimated using the same sets of voltage measurements. These results thus demonstrate that the reconstructed effective connectivity can capture the general properties of synaptic connections and better reveal relationships between network structure and dynamics.

11.
Phys Rev E ; 104(5-1): 054313, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942846

RESUMO

We consider a quasi-two-dimensional network connection growth model that minimizes the wiring cost while maximizing the network connections, but at the same time edge crossings are penalized or forbidden. This model is mapped to a dilute antiferromagnetic Ising spin system with frustrations. We obtain analytic results for the order-parameter or mean degree of the optimized network using mean-field theories. The cost landscape is analyzed in detail showing complex structures due to frustration as the crossing penalty increases. For the case of strictly no edge crossing is allowed, the mean-field equations lead to a new algorithm that can effectively find the (near) optimal solution even for this strongly frustrated system. All these results are also verified by Monte Carlo simulations and numerical solution of the mean-field equations. Possible applications and relation to the planar triangulation problem is also discussed.

12.
Phys Rev E ; 104(3-1): 034405, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654185

RESUMO

Identifying the mechanism of intercellular feedback regulation is critical for the basic understanding of tissue growth control in organisms. In this paper, we analyze a tissue growth model consisting of a single lineage of two cell types regulated by negative feedback signaling molecules that undergo spatial diffusion. By deriving the fixed points for the uniform steady states and carrying out linear stability analysis, phase diagrams are obtained analytically for arbitrary parameters of the model. Two different generic growth modes are found: blow-up growth and final-state controlled growth which are governed by the nontrivial fixed point and the trivial fixed point, respectively, and can be sensitively switched by varying the negative feedback regulation on the proliferation of the stem cells. Analytic expressions for the characteristic timescales for these two growth modes are also derived. Remarkably, the trivial and nontrivial uniform steady states can coexist and a sharp transition occurs in the bistable regime as the relevant parameters are varied. Furthermore, the bistable growth properties allows for the external control to switch between these two growth modes. In addition, the condition for an early accelerated growth followed by a retarded growth can be derived. These analytical results are further verified by numerical simulations and provide insights on the growth behavior of the tissue. Our results are also discussed in the light of possible realistic biological experiments and tissue growth control strategy. Furthermore, by external feedback control of the concentration of regulatory molecules, it is possible to achieve a desired growth mode, as demonstrated with an analysis of boosted growth, catch-up growth and the design for the target of a linear growth dynamic.


Assuntos
Retroalimentação Fisiológica , Modelos Biológicos , Linhagem da Célula , Retroalimentação , Células-Tronco
13.
Phys Rev E ; 103(6-1): 062302, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271711

RESUMO

We consider coupled network dynamics under uncorrelated noises, but only a subset of the network and their node dynamics can be observed. The effects of hidden nodes on the dynamics of the observed nodes can be viewed as having an extra effective noise acting on the observed nodes. These effective noises possess spatial and temporal correlations whose properties are related to the hidden connections. The spatial and temporal correlations of these effective noises are analyzed analytically and the results are verified by simulations on undirected and directed weighted random networks and small-world networks. Furthermore, by exploiting the network reconstruction relation for the observed network noisy dynamics, we propose a scheme to infer information of the effects of the hidden nodes such as the total number of hidden nodes and the weighted total hidden connections on each observed node. The accuracy of these results are demonstrated by explicit simulations.

14.
Phys Rev E ; 103(4-1): 042138, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005981

RESUMO

Electric circuits influenced by thermal noise are analogous to confined Brownian particles and can be an alternative and convenient scheme for studying stochastic thermodynamics. Here we experimentally demonstrate an effective technique of generating tunable potentials for Brownian dynamics in an electric circuit, realized by external controlled feedback. We present two illustrative examples of one-dimensional virtual potentials: static harmonic potential and time-varying double-well potential. The thermal noises of both cases undergo equivalent Brownian dynamics as if they were in the authentic potentials as long as the feedback is fast enough to respond to the designed potentials. The results show that the electric circuit provides a simple, effective, and programmable scheme to study the feedback-controlled virtual potential.

15.
Nonlinear Dyn ; 104(2): 1613-1626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716404

RESUMO

Inspired by the experimental and numerical findings, we study the dynamic instabilities of two coupled nonlinear delay differential equations that are used to describe the coherent oscillations between the top and bottom boundary layers in turbulent Rayleigh-Bénard convection. By introducing two sensitivity parameters for the instabilities of the top and bottom boundary layers, we find three different types of solutions, namely in-phase single-period oscillations, multi-period oscillations and chaos. The chaos solution contains rare but large amplitude fluctuations. The statistical properties of these fluctuations are consistent with those observed in the experiment for the massive eruption of thermal plumes, which causes random reversals of the large-scale circulation in turbulent Rayleigh-Bénard convection. Our study thus provides new insights into the origin of rare massive eruptions and sudden changes of large-scale flow pattern that are often observed in convection systems of geophysical and astrophysical scales.

16.
Phys Rev E ; 103(2-1): 022128, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33735993

RESUMO

We study the nonequilibrium steady-state (NESS) dynamics of two-dimensional Brownian gyrators under harmonic and nonharmonic potentials via computer simulations and analyses based on the Fokker-Planck equation, while our nonharmonic cases feature a double-well potential and an isotropic quartic potential. In particular, we report two simple methods that can help understand gyrating patterns. For harmonic potentials, we use the Fokker-Planck equation to survey the NESS dynamical characteristics; i.e., the NESS currents gyrate along the equiprobability contours and the stationary point of flow coincides with the potential minimum. As a contrast, the NESS results in our nonharmonic potentials show that these properties are largely absent, as the gyrating patterns are very distinct from those of corresponding probability distributions. Furthermore, we observe a critical case of the double-well potential, where the harmonic contribution to the gyrating pattern becomes absent, and the NESS currents do not circulate about the equiprobability contours near the potential minima even at low temperatures.

17.
Phys Rev E ; 101(1-1): 012123, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069609

RESUMO

A model based on the classic noninteracting Ehrenfest urn model with two urns is generalized to M urns with the introduction of interactions for particles within the same urn. As the inter-particle interaction strength is varied, phases of different levels of nonuniformity emerge and their stabilities are calculated analytically. In particular, coexistence of locally stable uniform and nonuniform phases connected by first-order transition occurs. The phase transition threshold and energy barrier can be derived exactly together with the phase diagram obtained analytically. These analytic results are further confirmed by Monte Carlo simulations.

18.
Phys Rev E ; 101(1-1): 012201, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069621

RESUMO

Effects of mechanical coupling on cardiac dynamics are studied by monitoring the beating dynamics of a cardiac tissue which is being pulled periodically at a pace slower than its intrinsic beating rate. The tissue is taken from the heart of a bullfrog that includes pacemaker cells. The cardiac tissue beats spontaneously with an almost constant interbeat interval (IBI) when there is no external forcing. On the other hand, the IBI is observed to vary significantly under an external periodic drive. Interestingly, when the period of the external drive is about two times the intrinsic IBI of the tissue without pulling, the IBI as a function of time exhibits a wave packet structure. Our experimental results can be understood theoretically by a phase-coupled model under external driving. In particular, the theoretical prediction of the wave-packet period as a function of the normalized driving period agrees excellently with the observations. Furthermore, the cardiac mechanical coupling constant can be extracted from the experimental data from our model and is found to be insensitive to the external driving period. Implications of our results on cardiac physiology are also discussed.


Assuntos
Relógios Biológicos , Coração/fisiologia , Fenômenos Mecânicos , Miocárdio/citologia , Animais , Fenômenos Biomecânicos , Cinética , Modelos Cardiovasculares , Rana catesbeiana
19.
Phys Rev E ; 100(1-1): 012121, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499780

RESUMO

We employ the sorted local transfer entropy (SLTE) to reconstruct the coupling strengths of Ising spin networks with positive and negative couplings (J_{ij}), using only the time-series data of the spins. The SLTE method is model-free in the sense that no knowledge of the underlying dynamics of the spin system is required and is applicable to a broad class of systems. Contrary to the inference of coupling from pairwise transfer entropy, our method can reliably distinguish spin pair interactions with positive and negative couplings. The method is tested for the inverse Ising problem for different J_{ij} distributions and various spin dynamics, including synchronous and asynchronous update Glauber dynamics and Kawasaki exchange dynamics. It is found that the pairwise SLTE is proportional to the pairwise coupling strength to a good extent for all cases studied. In addition, the reconstruction works well for both the equilibrium and nonequilibrium cases of the time-series data. Comparison to other inverse Ising problem approaches using mean-field equations is also discussed.

20.
Sci Adv ; 4(11): eaat7480, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30474056

RESUMO

It is commonly believed that heat flux passing through a closed thermal convection system is balanced so that the convection system can remain at a steady state. Here, we report a new kind of convective instability for turbulent thermal convection, in which the convective flow stays over a long steady "quiet period" having a minute amount of heat accumulation in the convection cell, followed by a short and intermittent "active period" with a massive eruption of thermal plumes to release the accumulated heat. The rare massive eruption of thermal plumes disrupts the existing large-scale circulation across the cell and resets its rotational direction. A careful analysis reveals that the distribution of the plume eruption amplitude follows the generalized extreme value statistics with an upper bound, which changes with the fluid properties of the convecting medium. The experimental findings have important implications to many closed convection systems of geophysical scale, in which massive eruptions and sudden changes in large-scale flow pattern are often observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...